Modeling of Dynamic Backgrounds by Type - 2 Fuzzy Gaussian Mixture Models

نویسنده

  • T. Bouwmans
چکیده

—Gaussian Mixture Models (GMMs) are the most popular techniques in background modeling but present some limitations when some dynamic changes occur like camera jitter, illumination changes, movement in the background. Furthermore, the GMM are initialized using a training sequence which may be noisy and/or insufficient to model correctly the background. All these critical situations generate false classification in the foreground detection mask due to the related uncertainty. In this context, we propose to model the background by using a Type-2 Fuzzy Gaussian Mixture Models. The interest is to introduce descriptions of uncertain parameters in the GMM. Experimental validation of the proposed method is performed and presented on a diverse set of RGB and infrared videos. Results show the relevance of the proposed approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cluster-Weighted Modeling as a basis for Fuzzy Modeling

The Cluster-Weighted Modeling (CWM) is emerging as a versatile tool for modeling dynamical systems. It is a mixture density estimator around local models. To be specific, the input regions together with output regions are treated to be Gaussian serving as local models. These models are linked by a linear or non-linear function involving the mixture of densities of local models. The present work...

متن کامل

Network Anomaly Detection using Fuzzy Gaussian Mixture Models

Fuzzy Gaussian mixture modeling method is proposed in this paper for network anomaly detection. A mixture of Gaussian distributions was used to represent the network data in multi-dimensional feature space. Gaussian parameters were estimated using fuzzy c-means estimation. The method was tested with the KDD Cup data set. Experimental results have shown that the proposed method is more effective...

متن کامل

IMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL

  Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...

متن کامل

­­Image Segmentation using Gaussian Mixture Model

Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...

متن کامل

SYSTEM MODELING WITH FUZZY MODELS: FUNDAMENTAL DEVELOPMENTS AND PERSPECTIVES

In this study, we offer a general view at the area of fuzzy modeling and fuzzymodels, identify the visible development phases and elaborate on a new and promisingdirections of system modeling by introducing a concept of granular models. Granularmodels, especially granular fuzzy models constitute an important generalization of existingfuzzy models and, in contrast to the existing models, generat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010